2012 EOS/ESD Symposium for Factory Issues

EMI-Caused EOS Exposure of Components and Its Mitigation

Vladimir Kraz¹, Patsawat Tachamaneekorn², Dutharuthai Napombejara³ ¹OnFILTER, Inc., Soquel, CA <u>vkraz@onfilter.com</u> ²Seagate Technology, Thailand, *patsawat.tachamaneekorn@seagate.com* ³Seagate Technology, Thailand, *dutharuthai.napombejara@seagate.com*

Objectives

- Electrical Overstress (EOS) is a substantial threat for components in production environment
- As sensitivity of components grows, EOS gains more prominence while it lags in terms of attention from manufacturing and in technical details of exposure
- Understanding the exposure to EOS and EOS-caused damage to components will significantly benefit those dealing with sensitive components
- This paper describes the nature of EMI-caused EOS in two typical manufacturing processes and shows ways of its mitigation

EOS Effect on Devices

- EOS signals deliver significant amounts of energy to the devices
 - Virtually no limit on current
 - Relatively long duration
- Damage to the devices is often manifested as a massive meltdown
- According to Intel, "EOS is the number one cause of damage to IC components."

source: SEM Labs

EMI-Caused EOS

- Significant proportion of electric overstress in manufacturing is caused by high-frequency transient signals
- This phenomenon is called conducted emission, or EMI – electromagnetic interference
- EOS-generating EMI in production environment comes from power lines and from equipment within tools

How Much Current can EMI Source Provide?

- Ability of EMI source to provide current is determined by its output impedance
- The lower the output impedance, the higher the current capabilities of the source
- Since EMI is caused by power elements, it appears that output impedance is low

Calculating Output Impedance

- EMI source is loaded with two different resistors
- Voltage across load resistors is measured
- Output impedance is calculated with the formula shown
- Two resistors 50Ω and 100Ω were used
- Voltage values were very close: 3.49V and 3.42V
- Output impedance of the source in this case is 2.09Ω
- Such low impedance is capable of outputting significant current

Slide 6

Noise From Power Lines

- Ideal power line (mains) provides sinusoidal voltage
- Every device consuming electricity loads power line and alters its voltage
- Most of noise is spikes and transient signals
- This noise travels from one tool to another and enters facility ground, propagating far
- These spikes enter other tools and may cause EOS in devices

EMI From Sources Within the Tools

- There are several sources of EMI within the manufacturing tools:
 - Servo and variable frequency motors
 - Solenoids and other actuators
 - Switched mode power suppliesUPS
- All of them consume energy in "bursts"
- This variable load in combination with finite impedance of wiring and power sources affects power voltage
- The higher their current draw, the higher level of EMI they are capable of providing

EMI Source Example: Servo Motor

- Low-frequency (up to 20kHz) square-wave power signal from the servo controller gains ringing and other artifacts due to RF mismatch with the motor and wiring
- Via capacitive coupling these high-frequency artifacts get on the rotor
- High-frequency leakage pollutes ground of the tool
- Now your components are exposed to strong highfrequency signal

Examples of Waveforms of Servo Motors

Servo Motor and EOS Current

- Spikes from servo motors are synchronized with the current spikes through the device
- The figure shows drive pulses of a servo motor and current between the robotic arm and ground of the test socket
- As seen the current spikes are synchronized with the rise time of drive pulses
- Other spikes are synchronized with the pulses on other phases of the motor

Pulse drive of servo motor

Current between the arm and socket

Mitigation of EOS from Servo Motor

- Several basic ways of reducing transient signals:
 - Improve wiring
 - Employ special EMI filtering
- Change of wiring is often impractical since the wiring is an integral part of the tool
- This leaves EMI filtering as the main method of mitigation of noise

Mitigation of EOS from Servo Motor

- Different "grounds" have different high-frequency voltage
- Devices are capacitively coupled to the shaft of the robotic arm.
- The result is high current when the device comes in contact with the test socket or shuttle
- Special EMI filters can greatly reduce EOS current as shown

EMI-Caused EOS in Soldering Process

- Soldering irons come in direct electrical contact with sensitive components
- Any voltage residing on soldering irons causes unwanted current into sensitive devices
- This current causes electrical overstress (EOS) that damages sensitive devices

What EOS Exposure is Safe?

 Various industry standards and recommendations do not always agree as seen below

Standard / Organization	Voltage	Current	Comment
ESDA STM13.1-2000	20mV	10mA	
MIL-STD-2000	2mV		RMS
IPC-TM-650 Sec.2.5.33.2	2V		Peak
IPC-TM-650 Sec.2.5.33.2		1µA	RMS
IPC-A-610-E	0.5V / 0.3V		Peak

- Ultimately, it is the users who has to set EOS requirements for their devices
- Guideline: no component got damaged from reduced levels of EOS

What to Measure?

- Typical specification for signal on soldering irons is in voltage
- Transient voltage measurements may be subject to radiated EMI distorting the data
- More accurate are current measurements
- It is current that damages the devices, not voltage

RMS or Peak?

RMS (C1)

- Most of EMI-caused EOS are transient in nature
- Measurement of such signals using RMS or average data is meaningless
- Figure to the right shows transient signals with peak values of over 700mV but RMS values of only 15.8mV
- Use only peak values obtained with appropriate instruments

	Main : 125 k								2ms/div		
Ŧ			inensia kienar			demon RID 2000 Mile		in the second	ter Bellerit.		
		Max(C1) Rms(C1)	76 15	51mV 5.8751mV		Min(C1)		-713n	nV		
	Max (C1)					761mV					
				_	740						

15.8751mV

How the EMI Voltage Gets to the Tip of the Soldering Iron

Current from the Tip of the Iron

- EMI-caused EOS here comes largely from noise on power lines and ground
- Even though both the tip of the iron and the board are grounded, from high frequency point of view they are different circuits
- The high-frequency voltage differential between the tip and the board creates EOS current

Mitigation of EOS in Soldering

- The way to prevent EMI-caused EOS current from soldering iron is to put the circuit in the EMIprotective environment using special EMI filters
- Intel: "...install EOS line control equipment such as incoming line filtering ..."
- Regular EMI filters do not provide noticeable advantage and may increase noise (Raytheon, 2005)

Mitigation of EOS in Soldering

Specially-designed EMI filters create EMI-protective environment for the soldering process

Conclusion

- "EOS is the number one cause of damage to IC components"
- Significant proportion of EOS is caused by EMI
- Mitigation of EMI-caused EOS is critical for consistent high yield
- Necessary elements for successful mitigation of EOS:
 - Understanding of origins and propagation of EMI on a facility level
 - Understanding of origins and propagation of EMI in tools
 - Proper implementation of EMI-suppression means